L-Cover: Preserving Diversity by Anonymity
نویسندگان
چکیده
To release micro-data tables containing sensitive data, generalization algorithms are usually required for satisfying given privacy properties, such as k-anonymity and l-diversity. It is well accepted that k-anonymity and l-diversity are proposed for different purposes, and the latter is a stronger property than the former. However, this paper uncovers an interesting relationship between these two properties when the generalization algorithms are publicly known. That is, preserving l-diversity in micro-data generalization can be done by preserving a new property, namely, l-cover, which is to satisfy l-anonymity in a special way. The practical impact of this discovery is that it may potentially lead to better heuristic generalization algorithms in terms of efficiency and data utility, that remain safe even when publicized.
منابع مشابه
On the Complexity of t-Closeness Anonymization and Related Problems
An important issue in releasing individual data is to protect the sensitive information from being leaked and maliciously utilized. Famous privacy preserving principles that aim to ensure both data privacy and data integrity, such as k-anonymity and l-diversity, have been extensively studied both theoretically and empirically. Nonetheless, these widely-adopted principles are still insufficient ...
متن کاملData Preserving By Anonymization Techniques for Collaborative Data Publishing
This paper mainly deals with the issue of privacy preserving in data mining while collaborating n number of parties and trying to maintain confidentiality of all data providers details while collaborating their database. Here two type of attacks are addressed “insider attack” and “outsider attack”. In insider attack, the data providers use their own records and try to retrieve other data provid...
متن کاملParallelizing K-Anonymity Algorithm for Privacy Preserving Knowledge Discovery from Big Data
Disclosure control has become inevitable as privacy is given paramount importance while publishing data for mining. The data mining community enjoyed revival after Samarti and Sweeney proposed k-anonymization for privacy preserving data mining. The k-anonymity has gained high popularity in research circles. Though it has some drawbacks and other PPDM algorithms such as l-diversity, t-closeness ...
متن کاملPrivacy-Preserving For Collaborative Data Publishing
This paper mainly deals with the issue of privacy preserving in data mining while collaborating n number of parties and trying to maintain confidentiality of all data providers details while collaborating their database. Here two type of attacks are addressed “insider attack” and “outsider attack”. In insider attack, the data providers use their own records and try to retrieve other data provid...
متن کاملFast Data Anonymization with Low Information Loss
Recent research studied the problem of publishing microdata without revealing sensitive information, leading to the privacy preserving paradigms of k-anonymity and `-diversity. k-anonymity protects against the identification of an individual’s record. `-diversity, in addition, safeguards against the association of an individual with specific sensitive information. However, existing approaches s...
متن کامل